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• The anesthetic propofol induces beta 
(12-20 Hz), alpha (8-12 Hz), and Slow 
Wave Oscillations (SWO, 0.1-1.5 Hz) 
on the EEG of human patients [1]

• At low propofol, near Loss of 
Consciousness, alpha amplitude is
maximal during the trough of the SWO 
phase, called "Trough-max" phase-
amplitude coupling (PAC) [1]

• At high propofol, in deep anesthesia,
alpha amplitude is maximal during the 
peak of the SWO phase, called 
"Peak-max" PAC [1]

• SWOs in natural sleep often begin in 
the cortex [2], while simulations suggest 
propofol alpha is generated by the thalamus [3]

• Propofol "directly" affects properties of thalamic and cortical cells and synapses 
such as GABA-A conductance, GABA-A decay time, and H-current conductance [1,3]

• Propofol "indirectly" affects thalamic and cortical cells via decreasing cortical 
acetylcholine (ACh) [4], which affects K(Na)-current conductance, corticocortical, and 
thalamocortical synaptic strengths [5]

• We hypothesized that the direct effects of propofol would produce and control both 
trough-max and peak-max PAC in a full, thalamocortical model, primarily by 
modulating thalamic behavior. However, we found that indirect effects from propofol 
on ACh and changes to the thalamocortical feedback loop could control trough-max 
vs peak-max changes.

•Our simulations modeled 100 cortical dendrite
compartments (PYdr), 100 cortical axo-somatic 
compartments (PYso), 20 cortical interneurons
(IN), 20 thalamic reticular neurons (TRN), and 
20 thalamocortical neurons (TC) using the 
biophysical Hodgkin-Huxley formalism [3,5]. 
Synapses are connected via a nearest-neighbor 
radius.

•Our artificial EEG signal was modeled from
the combination of AMPAergic corticocortical 
(PY→PY) and thalamocortical (TC→PY) 
synaptic currents onto cortical dendrites

•Our PAC analysis was based on the standard
Modulation Index coupling measure [6]

EEG Trough-max Involves Synaptic Competition
• We found that while direct effects were necessary for thalamic propofol alpha,
indirect effects were also necessary for SWO expression

• EEG signal had two components:  thalamocortical and corticocortical synapses
onto cortical dendrites

• In the thalamocortical synapse case:
        • Thalamic cells exhibit a persistent alpha oscillation, 
        while target cortical cells exhibit a SWO rhythm
        • The TC→PY synaptic current produces a Trough-max PAC 
        signal since the alpha amplitude is larger during cortical
        DOWN states, exhibiting a Slow Wave envelope
        • This coupling is maximal near a 1.0 Hz SWO frequency 
        and a 12 Hz alpha frequency

• In the corticocortical synapse case:
        • The cortex is has low synchronization, so their SWO phases 
        are somewhat out of alignment
        • Cortical alpha is only present during the UP states
        • Because the only alpha component of their synaptic currents
        are during UP states, these synapses produce a Peak-max 
        PAC signal

• The thalamocortical synapses showing Trough-max PAC compete
with the corticocortical synapses showing Peak-max PAC

• The thalamocortical Trough-max synapses have a much 
stronger synaptic current and therefore dominate the EEG 
signal

EEG Peak-max Spike Rastergram
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• Higher-dose propofol may cause a further decrease in ACh, leading 
to an increase in TC→PY synaptic strength, enabling Trough-max to 
switch to Peak-max PAC as shown here

• In the thalamocortical synapse case:
        • Spontaneous thalamic alpha elicits a stronger cortical response, 
        feeding back enough depolarization to silence thalamic bursting
        • Thalamic alpha only occurs near cortical UP states, therefore 
        producing Peak-max PAC in the synaptic current
        • This coupling prefers a slower SWO frequency near 0.5 Hz 
        and a slower alpha frequency near 10 Hz

• In the corticocortical synapse case:
        • The cortex is has high synchronization, so UP state transmission 
        across the cortex is more organized
        • Thalamic alpha is again only present during the UP states
        • Similar to the Trough-max case, these synapses produce 
        a Peak-max PAC signal

• SWO power is larger than during EEG Trough-max, similar to 
experiment [1]

• The thalamocortical and corticocortical synapses both exhibit
a Peak-max PAC in this higher propofol dose example  

• Cortical synchronization controls the network via limiting thalamic
alpha oscillations and produce depolarized thalamic DOWN states

• Propofol gradually decreases ACh, strengthening thalamocortical
synapses, therefore leading to cortical synchronization

• During EEG Trough-max:
• Thalamocortical synaptic strength is not strong enough for
alpha bursting to synchronize cortical UP states
• At any given point in time, weakly synchronized cortical UPs
lead to lower maximal activity in corticothalamic synapses

• Weak corticothalamic activity fails to depolarize and halt
thalamic bursting

• During EEG Peak-max:
• Thalamocortical synaptic strength is strong enough to initiate
and synchronize cortical UP states
• Synchronized cortical UPs produce strong, synchronous
corticothalamic AMPA firing
• These strong corticothalamic volleys depolarize the thalamus
above its bursting range, interrupting thalamic alpha bursting
and resetting the SWO cycle

• While direct propofol effects are sufficient for generation of thalamic
propofol alpha oscillations, indirect effects such as decreased ACh 
may be necessary for the generation of propofol SWOs

• When the cortex is locally weakly synchronized, strong 
thalamocortical alpha inputs dominate the competition with 
corticocortical synapses, producing EEG Trough-max PAC

• The network can transition from Trough-max to Peak-max PAC via 
increasing thalamocortical strength, or thalamocortical feedback

• When the cortex is highly synchronized, both synapse types 
cooperate to produce EEG Peak-max PAC

• The thalamus does not have to undergo intrinsic changes to switch
the system between Trough-max and Peak-max - changing its 
feedback to the cortex is sufficient

• Propofol-induced reduction in cortical ACh levels alter both 
activation of cortical SWO mechanisms and strength of 
thalamocortical synapses

Conclusions
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• While direct propofol effects are sufficient for generation of thalamic
propofol alpha oscillations, indirect effects such as decreased ACh 
may be necessary for the generation of propofol SWOs

• When the cortex is locally weakly synchronized, strong 
thalamocortical alpha inputs dominate the competition with 
corticocortical synapses, producing EEG Trough-max PAC

• The network can transition from Trough-max to Peak-max PAC via 
increasing thalamocortical strength, or thalamocortical feedback

• When the cortex is highly synchronized, both synapse types 
cooperate to produce EEG Peak-max PAC

• The thalamus does not have to undergo intrinsic changes to switch
the system between Trough-max and Peak-max - changing its 
feedback to the cortex is sufficient

• Propofol-induced reduction in cortical ACh levels alter both 
activation of cortical SWO mechanisms and strength of 
thalamocortical synapses

• Other neuromodulators may also contribute to cortical 
synchronization in the context of propofol [7]


